
Neurobiology of Disease

High-Frequency Network Activity, Global Increase in
Neuronal Activity, and Synchrony Expansion Precede
Epileptic Seizures In Vitro

Premysl Jiruska,1 Jozsef Csicsvari,3 Andrew D. Powell,1 John E. Fox,1 Wei-Chih Chang,1 Martin Vreugdenhil,1 Xiaoli Li,2

Milan Palus,4 Alejandro F. Bujan,2 Richard W. Dearden,2 and John G. R. Jefferys1

1Neuronal Networks Group, School of Clinical and Experimental Medicine and 2The Centre of Excellence for Research in Computational Intelligence and
Applications, School of Computer Science, The University of Birmingham, Birmingham B15 2TT, United Kingdom, 3Medical Research Council Anatomical
Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, United Kingdom, and 4Institute of Computer Science,
Academy of Sciences of Czech Republic, 182 07 Prague, Czech Republic

How seizures start is a major question in epilepsy research. Preictal EEG changes occur in both human patients and animal models, but
their underlying mechanisms and relationship with seizure initiation remain unknown. Here we demonstrate the existence, in the
hippocampal CA1 region, of a preictal state characterized by the progressive and global increase in neuronal activity associated with a
widespread buildup of low-amplitude high-frequency activity (HFA) (�100 Hz) and reduction in system complexity. HFA is generated by
the firing of neurons, mainly pyramidal cells, at much lower frequencies. Individual cycles of HFA are generated by the near-synchronous
(within �5 ms) firing of small numbers of pyramidal cells. The presence of HFA in the low-calcium model implicates nonsynaptic
synchronization; the presence of very similar HFA in the high-potassium model shows that it does not depend on an absence of synaptic
transmission. Immediately before seizure onset, CA1 is in a state of high sensitivity in which weak depolarizing or synchronizing
perturbations can trigger seizures. Transition to seizure is characterized by a rapid expansion and fusion of the neuronal populations
responsible for HFA, associated with a progressive slowing of HFA, leading to a single, massive, hypersynchronous cluster generating the
high-amplitude low-frequency activity of the seizure.

Introduction
One of the main disabling features of epilepsy is the unpredict-
ability of seizures. A variety of analytical techniques have been
developed to try to identify a state preceding seizures, the “preic-
tal” state (Litt and Lehnertz, 2002; Mormann et al., 2007). Most
of these studies have focused on algorithmic seizure prediction
and paid little attention to the underlying mechanisms of seizure
generation (or ictogenesis). However, the existence of a preictal
state and its biological origins are far from clear (Lopes da Silva,
2008; Sackellares, 2008). Greater insights are required into the
mechanisms of neuronal and population behavior of the pre-
ictal period, not only to improve seizure prediction but also to
help us understand the pathophysiological process of ictogen-
esis (Mormann et al., 2007).

A promising candidate phenomenon for a preictal marker is
high-frequency activity (HFA), which is found most reliably in in-
tracranial recordings (Mormann et al., 2007). Recent studies have
suggested an important role of HFA in epileptogenesis (Bragin et al.,
1999, 2000, 2004) and in seizure initiation (Allen et al., 1992; Fisher
et al., 1992; Bikson et al., 2003; Grenier et al., 2003; Bragin et al.,
2005). However, studies specifically on the role of HFA in the preictal
state are sparse, generally fail to address the cellular and network
mechanisms of its buildup, and in some cases consider it an epiphe-
nomenon (Worrell et al., 2004; Khosravani et al., 2005).

In the current work, we present cellular and network mecha-
nisms and spatiotemporal dynamics of HFA, and of the preictal
period, in the CA1 region of hippocampal slices in the low-calcium
and high-potassium models. The preictal period is characterized by
the progressive global increase in neuronal firing that manifests ex-
tracellularly as a buildup of HFA and a decrease in system complex-
ity. Immediately preceding the seizure, CA1 neuronal networks are
at state of high sensitivity to perturbations. Any weak depolarizing
and/or synchronizing perturbation can cause transition to seizure.
Transition to seizure is then characterized by rapid expansion and
fusion of activity of neuronal populations generating HFA, resulting
in one massive neuronal population generating seizure activity.

Materials and Methods
Transverse hippocampal slices (400 �m) were prepared from male
Sprague Dawley rats (180 –225 g; anesthetized with ketamine and me-
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detomidine; killed by cervical dislocation). All experiments were per-
formed under the Animals (Scientific Procedures) Act 1986 of the United
Kingdom and institutional ethical review. The slices were stored, at room
temperature, submerged in a holding chamber filled with “normal” ar-
tificial CSF (ACSF) consisting of the following (in mM): 125 NaCl, 26
NaHCO3, 3 KCl, 2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, and 10 glucose (aer-
ated with humidified 95% O2–5% CO2 mixture). After �60 min, slices
were transferred to an interface recording chamber, at 32°C, containing
normal ACSF.

Spontaneous seizure-like events were induced by perfusion of slices
with low-calcium increased-potassium ACSF consisting of the following
(in mM): 125 NaCl, 26 NaHCO3, 5 KCl, 0.2 CaCl2, 1 MgCl2, 1.25
NaH2PO4, and 10 glucose (bubbled with 95% O2–5% CO2 mixture).
Slices generating activity �2 mV in amplitude were accepted in this
study. In other slices, seizure-like events were induced by high-potassium
ACSF, which differed from normal ACSF only in a higher concentration
of KCl of 8.5 mM. In the high-potassium model, temperature in chamber
was kept at 33–35°C.

Extracellular field potentials were recorded using wire electrodes,
which were fabricated in our laboratory from platinum/iridium wire (25
�m diameter, �800 k� impedance; Advent Research Materials). Elec-
trodes were positioned individually under visual control using a micro-
scope and eyepiece graticule. The majority of recordings was performed
with 8 –10 electrodes inserted in the exposed surface of stratum pyrami-
dale along the long axis of the CA1 region. In experiments with wide
separation of electrodes, the interelectrode distance was 200 �m. In ex-
periments with close electrode separation, the distance between adjacent
electrodes was 25 �m. Electrode positions were photographed using a
digital eyepiece camera (World Precision Instruments). Interelectrode
distance then was verified using the NIH ImageJ program (http://rsb.info.
nih.gov/ij). Extracellular field potentials were preamplified using Neura-
lynx head-stage amplifier, amplified (500�), and low-pass filtered
(3 kHz) with Neuralynx Lynx-8 amplifiers.

Direct-coupled (DC) recordings were performed with glass micropi-
pettes (2– 8 M�) filled with low-calcium ACSF. Electrodes were placed
in the CA1 pyramidal cell layer. Signals were amplified with an
Axoclamp-1A (Molecular Devices) and Neurolog NL-106 and NL-125
amplifiers (Digitimer).

Extracellular unit activity was recorded with concentric tetrodes
(Thomas Recording GmbH) or tetrodes fabricated from tungsten wire
(13 �m; California Fine Wire). Single or three tetrodes (positioned close
to each other) were used. Signals were preamplified, amplified 2000�,
and filtered (high cutoff frequency of 10 kHz) using Neuralynx.

All recorded signals were digitized using 1401 Plus or 1401 Power and
Spike2 software (Cambridge Electronic Design). Extracellular field po-
tentials were digitized at 2.5 or 5 kHz. Data from tetrodes were digitized
at 20 or 25 kHz.

Uniform electric fields were applied via Ag/AgCl (2 mm in diameter, 4
cm long) electrodes using a Bi-Phasic Stimulus Isolator DS4 (Digitimer)
or an Analog Stimulus Isolator (model 2200; A-M Systems). Electrodes
were placed on either side of the hippocampal slice and oriented so that
the CA1b somatodendritic axis was parallel to the direction of the applied
electric field. The applied fields lasted 0.75 s. Schematics of recording
arrangements can be found in supplemental Figure 1 (available at www.
jneurosci.org as supplemental material).

All data analyses were performed using Spike2 software (Cambridge
Electronic Design) and programs written in our laboratory and running
under Matlab (MathWorks). Epochs lasting 0.5 s containing HFA were
analyzed, and the power spectrum was calculated using the Morlet wave-
let transforms (Li et al., 2007b). To quantify power spectral properties,
median and first moment were calculated within the frequency range of
10 –1000 Hz. The temporal profile of changes in frequency was deter-
mined from summated power in the frequency band 80 –250 Hz using
windows lasting 0.75 s. The synchronization of multichannel recordings
was analyzed using wavelet phase-synchronization methods. Because
most of the information, both interictal and ictal, in our signal occurs in
the frequency band 10 –250 Hz, signals for synchronization analysis were
bandpass filtered [10 –250 Hz, finite impulse response (FIR) filter]. Ep-
ochs lasting 0.2 s were analyzed. The amplitude and phase of field poten-

tial recording do not necessarily change in parallel (Lachaux et al., 2002),
so it was necessary to isolate phase synchronization between two sets of
field potential data. After Morlet wavelet transform, the phase informa-
tion over the frequency band was obtained. The instantaneous phase �(t)
of the signal x(t) was determined. The phase difference between two
series is defined as �n,m(t) � �1(t) � �2(t). The distribution of the cyclic
relative phase is �(t) � �(t)mod2�. The wavelet phase synchronization
index was calculated by � � ��cos	
t��2 	 �sin	
t��2, where the
brackets denote the average over time. The measure of synchronization
strength varies from 0 to 1. Phase synchronization was calculated be-
tween all possible pairs of channels so the synchronization matrix was
generated. This matrix brings information about the spatial profile of
synchrony and formation of clusters of synchrony between individual
channels. To quantify the formation of synchrony clusters and the syn-
chrony profile, the synchronization matrix was analyzed using principal
component analysis and random matrix theory (Li et al., 2007a). This
method decomposed the synchronization matrix to generate a set of
eigenvectors and eigenvalues. Then the following characteristics, based
on the analysis of eigenvectors and eigenvalues, were extracted: (1) global
synchronization index, which ranges from 0 to 1, where 0 denotes the
absence of synchrony and 1 denotes perfect (absolute) synchrony be-
tween signals; (2) number of statistically significant synchrony clusters;
and (3) synchronization index for each individual cluster, revealing the
amount of synchrony for that cluster. The global synchronization
index is derived from the maximal synchronization index.

Spike sorting was performed using Spike2 spike sorting toolbox and
Matlab routines. The continuously recorded wide-band signals were dig-
itally high-pass filtered �800 Hz using a fast Fourier transform filter. The
times of individual spikes were defined at their maximal negativities.
Units were initially clustered using KlustaKwik and then by a graphical
cluster cutting in two-dimensional plots (Wilson and McNaughton,
1993). The clustering process was based on the principle of plotting
different waveform parameters and features from different electrodes.
Principal component analysis was also used to extract features, usually
from the first three components. Interspike interval histograms and au-
tocorrelograms were calculated during the clustering process. If no clear
refractory period (�2 ms) was detected in the autocorrelogram, then
more than one neuron must be contributing to that cluster and addi-
tional feature combinations were examined to subdivide the cluster fur-
ther until a clear refractory period was present in the autocorrelogram
(Csicsvari et al., 1999). Only units with clear refractory periods were
included in the present analysis. Then cross-correlograms between all
possible pairs of units were calculated and examined for symmetrical
gaps in the center bins. The presence of a gap (common refractoriness)
suggested that two clusters represented activity of the same unit, and
therefore those clusters were merged (Fee et al., 1996). Neurons with low
firing rates were included in the study only if the number of observed
events was higher than 500 (silent neurons).

After the clustering procedure, several parameters were examined to
differentiate pyramidal cells from interneurons. Spikes of each unit were
extracted from the original wide-band recording and averaged. The av-
eraged spike was then resampled to 80 kHz and used to measure spike
width at 25% of its amplitude. This was the main criterion to differentiate
between interneurons (�0.4 ms) and pyramidal cells (�0.45 ms). Addi-
tionally, autocorrelogram shape was used to differentiate between neu-
ronal subtypes.

Raw wide-band recordings were bandpass (80 –250 Hz) filtered by an
FIR filter. Troughs of individual oscillation with amplitudes �5 and 7 SD
of background activity were identified. Cross-correlation functions were
calculated between single-unit activity and individual cycles of the fast
activity, with the peak negativity of each cycle as the reference point.
Autocorrelation and cross-correlation histograms were normalized by
dividing the count in each bin by the total number in all bins.

To determine the role of neurons in generating HFA, individual cell
firing phase histograms were calculated, normalized by dividing each bin
by total number of events (HFA cycles), and expressed as firing proba-
bility histograms. Using the Rayleigh test, we determined whether the
neuronal firing changed during HFA cycles (non-uniform distribution)
or not (uniform distribution). The intensity (depth) of the change in
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firing probability was quantified by generating unit vectors (summation
of spike phases) and normalized by number of spikes. The index of
intensity of change ranged from 0 (uniform distribution) to 1 (values of
all angles are the same).

To examine interactions (coupling) between neurons, we calculated
cross-correlograms between spike trains of pairs of neurons. In situations
with weak coupling not manifested with obvious peaks in cross-
correlograms, we used a surrogate approach to distinguish weak cou-
pling from random coincidence. To count the number of coincident
spikes, we used a spike-centered bin algorithm with bin size 5 ms (typical
duration of cycles of HFA). This approach detected coincident action
potentials and their number. We then used 200 surrogates for each pair of
recordings, generated by shuffling one of the original spike trains (main-
taining their respective interspike interval histograms), to generate a dis-
tribution for chance coincident firing. From this, we were able estimate
whether number of coincident spikes between the pair of neurons results
from random coincidence or from significant, if weak, interactions ( p �
0.05). To test the significance, we used one-sample t test to compare
number of coincident spikes generated by surrogates with value obtained
from original spike trains.

To study spatial volume conduction, spatial second derivative of volt-
age as a function of distance z and time t was estimated by a second-order
differencing formula (Kloosterman et al., 2001): {[�(z,t) � �(z � �z,t)] �
[�(z 
 �z,t) � �(z,t)]}/(�z) 2, where �(z,t) is the potential value at distance
z and time t. �z is spacing between adjacent electrodes, in our case 25 �m.

To characterize system dynamics and quantify signal complexity, we
used the Gaussian process entropy rate (GPER) measurement (Palus,
1997). GPER provides a useful first approximation of the level of com-
plexity of signals. It can be interpreted as a measure reflecting the number
of linearly independent oscillatory modes contained in the analyzed sig-
nal. GPER was calculated from signal epochs using the fast Fourier trans-
form in a window of 1.6 s, shifted through the signal by a step of 0.2 s. A
more detailed description of the method can be found in the supplemen-
tal data (available at www.jneurosci.org as supplemental material).

Statistical analysis was performed using SPSS software (SPSS Inc.).
Group comparisons were tested using t tests or Mann–Whitney tests.
Normal distribution was evaluated by the Kolmogorov–Smirnov test.
Temporal profiles and trends were analyzed using the general linear
model (GLM). Results in text and graphs were expressed as mean � SEM.

Results
Seizure activity
After perfusion with low-calcium ACSF for �60 min, slices gen-
erated repeated spontaneous field bursts (Fig. 1A) that consisted
of a negative shift in DC potential with superimposed population
spikes (Fig. 1B). The mean duration of field bursts was 17.3 �
0.5 s (n � 200, 40 slices), and they recurred with a mean interictal
interval of 46.6 � 1.4 s (n � 200, 40 slices). Their appearance was
similar to those reported previously (Jefferys and Haas, 1982;
Haas and Jefferys, 1984; Konnerth et al., 1986). The seizures
could start in any part of CA1 (supplemental Fig. 2, available at
www.jneurosci.org as supplemental material). Seizure onset
zones could change within individual slices, and sometimes sei-
zures started simultaneously in different parts of CA1. If CA1 was
cut into minislices each containing �2 mm of CA1 (supplemen-
tal Fig. 2D, available at www.jneurosci.org as supplemental ma-
terial), they maintained the ability to generate seizures with
multifocal onset (10 slices). Seizures could be preceded by pre-
bursts, an activity resembling seizures aborted shortly after onset
(supplemental Fig. 3, available at www.jneurosci.org as supple-
mental material).

Dynamics of high-frequency network activity during
interictal period
During the periods between seizures, low-amplitude (�400 �V)
irregular activity was present throughout CA1 (Fig. 1C). This

activity was composed of low-amplitude HFA (Fig. 1D,E) with
superimposed multiunit activity (Fig. 1F). Digital filtering re-
vealed substantial activity in the band 80 –250 Hz (Fig. 1E). This
high-frequency activity changed dynamically during the interic-
tal period and in the run-up to the next seizure (Fig. 2). The
bandpass filtered signal, wavelet spectrogram, and summated
power all show progressive increases in HFA centered on 186 � 2
Hz (Fig. 2C–E, respectively, calculated for the recording shown in
A, B). The increase in power in the 80 –250 Hz band is consistent
when averaged across 21 slices, revealing an asymmetrical
U-shaped profile (Fig. 2F,G, respectively, showing power in real
time and in interictal segment in which we divided each interictal
period into 100 equal segments). HFA power rapidly declined to
a minimum during the first few seconds after the previous seizure
and then progressively increased during most of the period be-
tween seizures, reaching a peak immediately before the start of

Figure 1. Low-calcium seizures and HFA. A, Repeated seizure activity. B, Detail of low-
calcium seizure. Seizures are superimposed on large negative DC shift. C, Periods between
seizures are characterized by the presence of low-amplitude HFA. D, Short burst of HFA with
superimposed multiunit activity. E, Bandpass filtered (80 –250 Hz) data showing only HFA.
F, Raw data were high-pass filtered (�600 Hz) to reveal multiunit activity (MUA).

5692 • J. Neurosci., April 21, 2010 • 30(16):5690 –5701 Jiruska et al. • Dynamics of Preictal State



the next seizure (Fig. 2F,G) (10.9 times minimum; n � 20; p �
0.001, GLM). At the onset of the seizure, HFA transformed to
high-amplitude low-frequency regular ictal discharges.

Part way through this progressive increase in power, �0.5
through the interictal period, the central frequency of HFA
started to decrease (characterized by first moment or median)
(Fig. 2H, I) and progressively slowed until just before the seizure
when the rate of slowing increased much more rapidly and in
parallel with the rapid increase in power. The mean frequency (or
first moment) of the power spectra progressively decreased from
309 � 9 to 231 � 9 Hz (Fig. 2H) (n � 21) immediately preceding
the seizure; a similar profile of the first moment of frequency was
seen in individual interictal periods (Fig. 2E, dashed lines). The
median frequency followed a similar course, decreasing from
229 � 11 to 158 � 10 Hz (Fig. 2 I) (n � 21) at seizure onset. The
decreases in these values suggest that, preceding the seizure, the
composition of HFA shifts toward lower frequencies, but these
remain within the HFA band. The overall increase in power was
accompanied by an increase in the amplitude of HFA cycles (Fig.
2C). The progressive increase in the amplitude was reflected by an
increase of the ratio between the number of 7 and 5 SD cycles,
from a baseline of 0.46 � 0.03 to 0.69 � 0.03 immediately pre-
ceding the seizure (n � 9; p � 0.001, t test) (Fig. 2 J,K).

To examine the dynamics of interictal HFA, phase space tra-
jectories were constructed in three-dimensional phase space
using original and time-shifted variables x(t), x(t 
 
), and x(t 

2
), where 
 is fixed time lag (1 ms) (Fig. 3C–F). During seizures,
the trajectory pattern was regular and resembled a noisy three- or
more dimensional limit cycle (Fig. 3F). The phase space trajec-
tory during interictal periods had more irregular (complex) pat-
terns (Fig. 3C,D). The progressive increase in signal amplitude
preceding the seizure was associated with a progressive expansion
of the trajectory in phase space (Fig. 3C–E). Transition to seizure
(Fig. 3E) was characterized by a sudden and rapid expansion in
phase space reflecting a sudden increase in signal amplitude, as-
sociated with an increase in regularity (decrease in complexity) of
the phase space trajectory.

To quantify and describe discrete changes in dynamical sys-
tem complexity, signals were analyzed using GPER (Palus, 1997).
This is an entropic measure that measures system complexity,
understood as the number of different oscillatory processes mak-
ing up the time series (Fig. 3G,H). High values reflect large num-
bers of processes, whereas low values indicate smaller numbers of
processes creating the time series. It showed that mean GPER
between seizures was 1.763 � 0.001 (n � 30; 10 slices). During
the seizure, the complexity of the system was significantly lower
than during the interictal period (Fig. 3G,I). Ictal values of the
GPER were 1.21 � 0.02 (n � 30; 10 slices; p � 0.001). Discrete
changes in system complexity were observed between seizures. As
the next seizure approached, values of GPER progressively and

Figure 2. Temporal profile of HFA. A, Example of period between seizures (DC removed,
high-pass �10 Hz filter). B, Isolated interictal period. C, Bandpass (80 –250 Hz) filtered inter-
ictal period demonstrates increases in amplitude and especially in incidence of bursts of HFA
preceding the seizure. D, Corresponding wavelet spectrogram shows increase (pale gray to
white) in power, especially in frequency band (80 –250 Hz) mainly �185 Hz. E, Corresponding
summated power of 80 –250 Hz band and first moment of power spectra. F, Time course of

4

summated power of 80 –250 Hz band in 21 slices (mean � SEM; gray area is SEM). The increase
power starts �30 s before the seizure. After the end of the seizure, HFA occurs and quickly
decreases in power. G, Because the period between seizures in each slice is not equal, interictal
periods were each divided into 100 epochs of equal length, and the mean values of summated
power for individual epochs was obtained. H, I, First moment (H) and median (I) of power
spectra show that buildup in HFA is accompanied by progressive drop in frequency, with sudden
drop immediately preceding the seizure. J, Temporal profile of incidence of �5 and �7 SD HFA
cycles. Preceding the seizure, there is increase in number of �5 and �7 SD oscillations, but the
steeper increase in �7 SD suggests also an increase in amplitude of the HFA preceding the
seizure (period between seizures divided into 10 segments). K, Ratio between numbers of �7
and �5 SD cycles reveal an increase in cycles with higher amplitude.
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significantly decreased (Fig. 3G,H) ( p � 0.001, GLM, n � 30; 10
slices). Seizure onset was characterized by a substantial and sig-
nificant drop in GPER (Fig. 3G,I) ( p � 0.001, t test; n � 30; 10
slices). The low GPER values persisted throughout the course of
each seizure.

HFA spatial profile and synchronization on a local scale
We studied the spatial and synchrony profiles of HFA on both
local and global scales. For the analysis at the local scale, record-
ings were performed with electrodes spaced at 25 �m (Fig. 4).
Buildup of HFA was present in all recording electrodes (Fig. 4A).
Estimation of phase synchronization between all pairs of elec-
trodes and subsequent random matrix analysis showed that HFA
generates local areas of synchrony (Fig. 4C). A maximum of three
independent statistically significant ( p � 0.01) synchronization
clusters could be observed at a time (Fig. 4C). Therefore, we used
the first three synchronization indices to determine the mean
strength of synchronization of three largest clusters between sei-
zures. Their values were 0.165 � 0.004, 0.091 � 0.002, and
0.021 � 0.001.

Transition to seizure was characterized by sudden spatial ex-
pansion of synchrony (n � 24, 8 slices). This expansion was a
focal process with one of the clusters expanding (Fig. 4D) and
merging with adjacent clusters. The mean global synchrony index
(GSI) at seizure onset was 0.46 � 0.03 (seven slices), significantly
different from interictal values ( p � 0.001, t test). During sei-
zures, expansion proceeded and the strength of synchrony fur-
ther increased until the whole recorded area generated highly
synchronous activity (mean GSI, 0.61 � 0.02; seven slices) (Fig.
4E,G). During seizures, periods of activity were observed during
which the entire area acted as one hypersynchronous ictal cluster
(maximum GSI, 0.88 � 0.03; seven slices).

We tested the hypothesis that the spatial structure in the HFA
simply reflected passive volume conduction from a very local
source. Passive volume conduction would result in a 0 s spatial
derivative of voltage; this is the basis of current source density
analysis in which significant values of this measure are inter-
preted in terms of currents passing between the intracellular and
extracellular spaces. The second spatial derivative of voltage
along the pyramidal layer showed substantial values (Fig. 4C,D),
which shows that the structure of HFA is not attributable to
passive decay but rather is the consequence of local activity. Even
after seizure onset, when the whole of CA1 becomes phase locked,
the second derivative reveals current sinks and sources along the
pyramidal layer, associated with the propagating population
spikes (Fig. 4E).

The first synchronization index shows the largest synchrony
cluster, which therefore is used as a measure of global synchroni-
zation to estimate the total amount of synchrony in the studied
area. The mean GSI between seizures was 0.165 � 0.004 (n � 30;
10 slices) (Fig. 4B). The temporal profile of the GSI index had a
U-shape during the interictal period (Fig. 4F) ( p � 0.001, GLM).
This increase in synchrony ran in parallel with increase in ampli-
tude of HFA and its spatial extent (Fig. 4H).

HFA spatial profile and synchronization on a global scale
Recording with a wider interelectrode separation of �200 �m
(17 slices) between seizures showed that the buildup in HFA
occurs over the entire CA1 region (Fig. 5A). However, HFA did
not synchronize between electrodes; no synchrony clusters were
observed in the synchronization matrix during interictal HFA
(Fig. 5C). The mean GSI recorded between seizures with the
widely spaced electrodes was 0.009 � 0.0004 (n � 30; 10 slices),

Figure 3. Preictal and ictal changes in Gaussian process entropy rate. A, Two seizures
and intervening interictal period. B, Signal bandpass filtered at 80 –250 Hz shows buildup
in HFA. C, Phase space diagram constructed from the activity during the middle part of the
interictal period has a visually irregular (complex) pattern. D, Activity closer to the seizure
onset is still characterized by an irregular, but expanding, pattern in phase space.
E, Seizure onset is characterized by a progressive expansion and more regular pattern of
trajectories. F, Regular pattern of trajectories during the seizure, which resembles a three-
or more dimensional limit cycle. G, GPER, with GPER progressively decreasing before the
seizure and a substantial drop during the seizure. H, Bar graph shows changes in interictal
GPER across 10 slices. I, Changes in GPER during seizures across 10 slices.
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significantly smaller than from recordings with closely spaced
electrodes ( p � 0.001, Mann–Whitney test) (Fig. 5F). Areas of
increased synchrony were detected at the end of prebursts, which
preceded the seizure and/or at the initial parts of seizure (0.12 �
0.01; n � 36; 12 slices) (Fig. 5D). As each seizure progresses,
synchrony spreads to adjacent regions, ultimately entraining the
whole of CA1 (Fig. 5E). In cases with simultaneous onsets at
either end of CA1, the resulting two large seizure clusters merged
to cover the whole of CA1. The mean seizure synchrony index
was 0.4 � 0.02. During the advanced stages of the seizure, the
entire CA1 region could be involved in ictal activity and behaved
as a single cluster of hypersynchronous activity (Fig. 5E,G). Then
GSI reached its maximal value (0.78 � 0.03; n � 36; 12 slices)
(Fig. 5E,G).

Cellular mechanisms of high-frequency network activity
We investigated neuronal behavior during HFA by isolating 247
cells from tetrode recordings. Of these, we were able to reliably
differentiate 87 pyramidal cells and 27 interneurons (Fig. 6). The
remaining cells were either unclassifiable or were “silent” pyra-
midal cells, which fired fewer than 500 action potentials over the
recording period of �15 min. Pyramidal cells fired single action
potentials (mean width, 0.57 � 0.02 ms) or short bursts of action
potentials with mean firing rate 4.0 � 0.7 Hz (Fig. 6A,C). Inter-
neurons fired trains of action potentials (mean width, 0.37 � 0.03
ms) or could also fire single action potentials with a mean firing
frequency of 15.1 � 2.6 Hz (Fig. 6B,D). Cross-correlograms be-
tween spike trains and HFA cycles showed that pyramidal cells
increased firing robustly during HFA cycles, whereas interneuro-
nal activity was only slightly increased (Fig. 6E,F). To quantify
the firing probability, phase histograms were calculated (Fig.
6G,H). All pyramidal cells showed statistically significant in-
crease of their spike timing in relation to HFA cycle (Rayleigh test,
p � 0.05; n � 87), as did interneurons (n � 27). Pyramidal cell
firing probability peaked during the trough of HFA cycle with
mean angle of firing 175 � 4°, overlapping the trough minimum
at 180°. The mean intensity in increase of pyramidal cell firing
probability in relation to HFA cycle was 0.49 � 0.02. The mean
intensity of increase in firing probability of interneurons was
0.19 � 0.02, significantly lower than that of pyramidal neurons
( p � 0.001, t test); the mean phase angle of the firing probability
peak was 197 � 8°. Although the activity of both pyramidal cells
and interneurons increases during HFA cycles, the firing proba-
bility and firing rates of both classes shared an important feature:
that none of the cells fired during every HFA cycle.

Figure 4. Synchrony profile of HFA and seizures on a local scale. A, Recording with closely
spaced electrodes (25 �m). Period between seizures is characterized by the presence of HFA in
all channels. Preceding the seizure are two short prebursts (asterisks). B, GSI slightly increases
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during preictal period. Transient increases can be observed during the prebursts. Seizure onset
is characterized by a sudden increase in GSI, rising up to 0.9. C, Detail of recording between
seizures shows HFA present in all channels (i). Phase-synchronization matrix (ii) shows two
statistically significant clusters ( p � 0.01). Synchronization indices for the individual clusters
are 0.18 and 0.09. Synchronization index of largest cluster corresponds to GSI. Second spatial
derivative of voltage shows the presence of several local sinks (iii). D, Seizure onset is charac-
terized by expansion of one of the clusters and coalescence with adjacent ones. GSI is 0.38.
Second derivative of voltage shows expansion and spread of local sinks. E, Seizure activity is
characterized by high-amplitude low-frequency activity during which whole recorded area
generates activity synchronously and creates one large hypersynchronous cluster. GSI reaches
0.83. Note the continuous current sinks and sources propagating across the area of recording.
F, G, Values of GSI between seizures (F) and during seizures (G). There is a modest, but signifi-
cant, progressive increase in synchrony during preictal period. H, Preictal changes characterized
by increase in amplitude are associated also with increased spatial extent (averaged HFA from
interictal period divided into 5 segments).
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Cellular behavior, and correlating multiunit activity with
HFA, suggested that individual HFA cycles are attributable to
cofiring of more than two neurons (Fig. 1D–F) (supplemental
Fig. 4, available at www.jneurosci.org as supplemental material).
Therefore, we examined coupling between neuronal firing.
Cross-correlation analyses did not demonstrate the presence of
clear coupling between pairs of neurons. Therefore, we examined
the existence of weak coupling using a coincidence approach (Fig.
6 I). Firing coincidence was determined in 5 ms time windows.
For each pair of trains, we generated 200 surrogates with shuffled
spikes to estimate chance levels of coincident firing. Analyses of
1354 pairs of neurons from single tetrode data identified poten-
tially significant coincident firing in 54 pairs (4%) of neurons,
using a criterion of fewer than 10 of the 200 surrogates having
more coincident firings than the real data. A sample of pairs not
meeting this criterion showed that the observed incidence of co-
incident firing was not significantly different from the surrogate
data. More detailed analysis of the 54 pairs that did reach crite-
rion revealed that, in all cases, the observed coincident firing rate
was significantly different from that for the population of surro-
gates ( p � 0.001, one-sample t test), showing that the modest
incidence of coincident firing was not attributable to chance.

During interictal periods (such as that shown in Fig. 6 J–M),
unit firing accelerated or, in some cases, postictally silent units
were recruited, as the next seizure approached. This applied to
both pyramidal cells and interneurons (Fig. 6M). To determine
the overall dynamics of neuronal firing during interictal periods,
we averaged the firing rate for each of 10 equal segments per
interictal period for a total of 24 interictal periods from eight
slices. This revealed a slowing during the early interictal period
just after the previous seizure, followed by a progressive increase
in firing rate as the next seizure approached (Fig. 6N): the mean
multiunit firing rate increased from a minimum of 32 � 3 Hz
shortly after the previous seizure to 121 � 18 Hz just before the
next (n � 12; p � 0.001, GLM). The asymmetrical U-shape of
mean unit firing rate during the interictal period resembles the
pattern seen for summated HFA power (Fig. 2E,F), HFA ampli-
tude (Fig. 2 J,K), and HFA local synchrony (Fig. 4F) and the
inverted asymmetrical U-shape for GPER (Fig. 3H). We deter-
mined the correlation between mean unit firing rate and HFA
summated power within the 80 –250 Hz band and found r �
0.81 � 0.01 (five slices).

To examine cellular mechanisms of HFA further, slices were
perfused with drugs. Synaptic transmission is blocked by the low
concentration of Ca 2
 in the ACSF (supplemental Fig. 5, avail-
able at www.jneurosci.org as supplemental material), but neuro-
transmitter release independent of action potentials and calcium
entry is possible. Therefore, we applied antagonists of AMPA (20
�M 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-
sulfonamide; n � 4 slices), NMDA (25 �M 5-APV; n � 4 slices),
and GABAA (20 �M bicuculline methiodide; n � 5 slices) recep-
tors. None of the drugs applied blocked HFA. Application of
gap-junction blockers [0.25– 0.5 mM octanol (n � 7 slices), 0.2
mM carbenoxolone (n � 4 slices)] did not suppress HFA either.
Decreasing the extracellular space by perfusing slices with hypo-
osmolar ACSF (both 40 and 90 mOsm below control osmolarity)
increased amplitude of HFA cycles (n � 4 slices).

Figure 5. Synchrony profile of HFA and seizures on a global scale. A, Recording with large
separation between electrodes (200 �m) shows widespread buildup in HFA. B, Between sei-
zures, GSI values are very low. C, Detail of activity during preictal period shows the widespread
presence of HFA, which lacks synchrony between electrodes. D, Seizure onset is characterized by
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an expansion of synchrony, which is rapid but slower then on the local scale. E, During the
seizure, the entire CA1 can generate epileptic activity in near complete synchrony (GSI of 0.95).
F, G, GSI between (F) and during (G) seizures on the large (global) scale.
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Transition to seizure
Preictal changes are slow and progressive, but transition to
seizure is a sudden and rapid process associated with massive
amplitude increase, synchrony expansion, and decrease in
GPER. Seizures could be triggered by applying various exter-
nal perturbations, such as local application of glutamate (10
mM glutamate; eight slices) (Fig. 7A), antidromic electrical
stimulation (four slices), or by application of electric fields
(four slices) (Fig. 7B–E).

Application of electric fields showed a time-dependent sensi-
tivity of the CA1 area to applied fields. Fields of various strengths
(�2, �4, �8, �10, �20, �40, and �60 V/m) were applied dur-
ing the periods between seizures. Long after the previous seizure
and immediately preceding the next expected seizure, weak fields
(�4 V/m) reliably triggered seizure activity ( p � 0.05, t test; n �
8; 4 slices) (Fig. 7B,C); in some cases, fields as weak as �2 V/m
were able to trigger seizures. Fields were applied repetitively dur-
ing the interictal period until the next seizure (Fig. 7D). The

Figure 6. Cellular mechanisms of HFA and dynamics of cellular firing. A, Averaged pyramidal cell action potential (gray area represents SEM; n � 84 cells). B, Averaged interneuronal action
potential (gray area represents SEM; n � 27 cells). C, D, Normalized and averaged autocorrelograms of firing of pyramidal cells (C) and of interneurons (D). E, F, Averaged normalized cross-
correlograms between HFA cycle and firing of pyramidal cells (E) and interneurons (F). G, Phase histograms of firing probability, during HFA cycles, show increase in probability of pyramidal cell firing
during the HFA cycle, with increased probability of firing mainly during the trough of HFA cycle. H, Phase histogram for interneurons show only mild increase of firing during the HFA cycle.
I, Coincident firing. Coincident firing was observed 43 times between the illustrated pair of neurons. Histogram shows the number ( y-axis) of coincident firings (x-axis) observed in 200 surrogates.
Results suggest that coincident firing between these two neurons is not attributable to random coincidence ( p�0.001). J–L, Interictal period between two seizures is characterized by a progressive
buildup in HFA. M, Activity of pyramidal cells (PYR) and interneurons (INT) derived from three closely spaced tetrodes reveals a progressive increase in neuronal firing and recruitment of cells.
N, Transition to seizures is characterized by progressive increase in multiunit activity (n � 24; 8 slices).
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stronger the applied field, the greater the truncating of the inter-
ictal period (Fig. 7F). Fields applied shortly after the previous
seizure needed to be strong (stronger than �40 V/m) to trigger
persistent seizure activity (Fig. 7E). From these data, we calcu-
lated sensitivity S for five segments of interictal period, using the
following formula: S � (field evoking seizure)/(fields evoking
seizure 
 fields failing) * 100. This measure showed that sensi-
tivity to applied fields increases linearly preceding the seizure
( p � 0.001, GLM) (Fig. 7G), an increase that suggests a progres-
sive increase in excitability of CA1 area.

HFA buildup in high-potassium model
To examine whether preseizure changes (buildup in HFA) can be
observed in a model in which synaptic activity is intact, we re-
corded from CA1 in slices perfused with high-potassium (8.5 mM

KCl) ACSF. CA1 was isolated from CA3 input by a cut. After
perfusion with high-potassium ACSF for �20 min, isolated CA1
generated repeated, spontaneous seizures (Fig. 8A), characterized
by repeated epileptiform discharges (Jensen and Yaari, 1988).
The mean duration of field bursts was 12.4 � 0.7 s (n � 29, 6
slices), and they recurred with a mean interictal interval of 40.3 �
2.0 s (n � 28, 6 slices). During the periods between seizures,
low-amplitude activity was present throughout the CA1 (Fig.
8B). This activity was characterized by the presence of HFA (Fig.
8C) with superimposed multiunit activity (Fig. 8D). Digital fil-
tering and spectral analysis revealed that this HFA had frequency
peaks centered at 217 � 7 Hz (n � 23, 6 slices). This high-
frequency activity had similar features (morphology and shape)
to HFA observed in the low-calcium model. The temporal profile
showed that HFA in the high-potassium model changed dynam-
ically throughout the interictal period and progressively built up
in the run-up to the next seizure, again like the low-calcium
model (Fig. 8E,F). Digital filtering (Fig. 8F), spectrograms (Fig.
8G), and summated power (Fig. 8H) for the frequency band
80 –250 Hz all showed progressive linear increases as the next
seizure approached (n � 48, 16 slices; just before the next seizure
summated power reached 25.8 � 3.1 times its minimum; GLM,

p � 0.001) Progressive buildup was associated with decrease in
the spectral first moment from 321 � 5 to 251 � 4 Hz immedi-
ately preceding seizure (GLM, p � 0.001) (Fig. 8 I). At the onset of
the seizure, HFA transformed from low-amplitude HFA to high-
amplitude low-frequency seizure discharges.

Discussion
In this study, we showed complex dynamics of the preictal state in
two models of epileptic seizures. In both cases, this preictal state
was characterized by buildup of HFA. Our detailed data on the
low-calcium model suggest that individual cycles of HFA are gen-
erated mainly by action potential firing of CA1 pyramidal cells
with a small but significant contribution from interneurons. The
width and shape of individual cycles and the width and shape of
extracellular action potentials suggest that each HFA cycle repre-
sents population phenomenon during which a small group of
neurons (2–10 cells) generates action potentials simulta-
neously during a time window of �5 ms. Analysis of the firing
of pairs of units recorded with single tetrodes revealed that a
minority of neuron pairs did indeed fire within 5 ms of each
other more often than chance. Analysis of spatial synchrony
suggests that HFA cycles are generated by multiple and inde-
pendent local (�130 �m) neuronal populations distributed
across the entire CA1. A key question is what are the mecha-
nisms leading to near-simultaneous cofiring of such small
neuronal populations?

The absence of synaptic transmission in the low-calcium
model suggests that the mechanisms involved in generating HFA
must be predominantly nonsynaptic (Haas and Jefferys, 1984;
Konnerth et al., 1986). Two conditions are necessary for the gen-
eration of HFA in this model. The first is the presence of increased
neuronal firing. Pyramidal cells and interneurons become hyper-
active and spontaneously generate action potentials, following
the experimental manipulation of decreasing extracellular cal-
cium and increasing extracellular potassium. In contrast, CA1
cells in normal hippocampal slice conditions very rarely fire
spontaneously.

Figure 7. Sensitivity to external perturbations. A, Seizure triggered by local application of 10 mM glutamate. B, During preictal period immediately preceding the next expected seizure, weak
external depolarizing electric fields (�4 V/m, 0.75 s) can trigger seizure (C). D, Repeated medium strength (�8 V/m) pulses failed to trigger seizures until later in the interictal period. E, Strong
depolarizing field (�40 V/m) reliably triggered seizures early in the interictal period. F, Repeated pulses (as in D) demonstrate the relationship between field strength and shortening of the interictal
period. G, Sensitivity of CA1 area to applied fields, of all strengths, as a function of stage during the interictal period (divided into 5 equal segments based on the interictal period measured in the
absence of fields). The closer to the predicted seizure onset, the higher the percentage of applied fields of all strengths capable of inducing seizures.

5698 • J. Neurosci., April 21, 2010 • 30(16):5690 –5701 Jiruska et al. • Dynamics of Preictal State



The second necessary condition for generating HFA is a
mechanism enabling action potential cofiring with the �5 ms
time span. Currently, there are two known nonsynaptic mecha-
nisms capable of achieving such fast synchronization of firing: (1)
interaction via gap junctions between pyramidal cells (Draguhn
et al., 1998; Schmitz et al., 2001), and (2) local electric field or
ephaptic interactions (Jefferys, 1995). Both mechanisms have
been implicated in HFA (Draguhn et al., 1998; Grenier et al.,
2003; Foffani et al., 2007). However, the persistence of HFA in the
presence of gap-junction blockers in our experiments, together
with the enhancement of HFA by decreasing extracellular space,
supports the role of ephaptic mechanisms. In this mechanism,
the electric field generated around cells when they fire can excite
adjacent cells, especially if they are close to threshold as they are in
the low-calcium model. This mechanism requires close proxim-
ity between cells and is helped by their parallel anatomical orga-
nization. Some CA1 interneurons are known to share orientation
and location with CA1 pyramidal cells, which may explain why
some interneurons increased their firing during the HFA cycle.
No neurons, whether interneuron or pyramidal cell, fired on
every cycle of HFA: rather, the high frequency of HFA is a com-
posite of low-frequency firing neuronal populations.

One of the main findings of the present study is that HFA is a
dynamic process, with HFA progressively building up and
strengthening preceding the seizure. At the cellular level, the in-
crease in incidence of HFA corresponds to a gradual increase in
neuronal excitability reflected as increased individual cell firing
and the recruitment of silent cells. As seizure onset approaches, the
neuronal populations generating HFA increase in size, which is re-
flected by increases in the amplitude of HFA (and hence increase in
power), with a progressive increase in global synchrony.

Seizure prediction and EEG analysis in human patients com-
monly relies on the measurement of the system dynamics of elec-
trographic data (Litt and Lehnertz, 2002; Mormann et al., 2007).
Several different analytical tools have revealed progressive preic-
tal changes in measures of system dynamics and complexity: cor-
relation dimension (Lehnertz and Elger, 1995), Lyapunov
coefficient (Iasemidis et al., 1990), Kolmogorov entropy, etc. The
biological substrate of these measures is not clear, but they gen-
erally suggest decreases in complexity of the system preceding the
seizure. Periods between low-calcium seizures were also associ-
ated with changes in system dynamics, reflected by a decrease in
GPER. This measure of system complexity is understood to re-
flect the number of independent oscillatory processes generating
the observed time series. In our study, the preictal decrease in
entropy rate could be explained by progressive expansion of neu-
ronal clusters generating HFA, with a concomitant decrease in
their number.

At seizure onset, low-amplitude high-frequency activity very
rapidly converts into high-amplitude low-frequency ictal dis-
charges. We show that this transition is characterized by the spa-
tial expansion of synchrony and the coalescence of local areas of
synchronization. Other evidence shows that seizure generation
requires recruitment of critical “minimal mass” of neuronal pop-
ulation (Fox et al., 2007). During the seizure, CA1 behaves as one
hypersynchronous population of neurons with an associated dra-
matic drop in systems complexity, which confirms that, during
seizures, the system behaves as a more compact process.

Figure 8. Preseizure changes in the high-potassium model. A, Repeated seizure activity.
B, Between seizures, low-amplitude HFA is present with superimposed multiunit activity
(MUA). C, Episode of HFA bandpass filtered (80 –250 Hz) data. D, High-pass filtering (�600 Hz)
shows multiunit activity (MUA). E, Isolated interictal period shows progressive buildup of low-
amplitude HFA. F, Bandpass (80 –250 Hz) filtered interictal period demonstrates increases in
amplitude and incidence of HFA preceding the seizure. G, Corresponding wavelet spectrogram
shows progressive increase (pale gray to white) in power, especially in frequency band (80 –250
Hz) centered around�195 Hz (arrows). H, Time course of summated power of 80 –250 Hz band
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in 16 slices (mean � SEM, gray area is SEM). I, Frequency profile shift toward low frequencies
preceding the seizures, expressed by the temporal profile of the first moment of the spectrum.
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Immediately preceding seizure onset, CA1 is in a highly excit-
able state susceptible to being recruited into seizure activity and
sensitive to small perturbations. Application of brief electrical
fields revealed increased sensitivity to external stimuli. Fields of
2– 4 V/m were capable of triggering seizures. Under normal con-
ditions, these field intensities are harmless: fields 20 – 40 times
stronger are required to evoke epileptic activity, which does not
persist beyond the stimulus (Bikson et al., 2004). A variety of
weak external perturbations can trigger seizures under these con-
ditions (our observations and those of Yaari et al., 1986), as long
as they have depolarizing and/or synchronizing actions. These
preictal states of low seizure threshold will also be susceptible to
endogenous perturbations, which may provide the actual trigger
for the seizure: their diversity would contribute to the unpredict-
ability of seizure initiation.

Buildup in HFA has been reported, but not investigated in
detail, in conditions of intact synaptic activity in both humans
(Worrell et al., 2004; Khosravani et al., 2009) and experimental
models (Khosravani et al., 2005). The nonsynaptic processes de-
scribed above remain active in these models but are modulated by
synaptic activity in ways that modify the dynamics of the preictal
state (Dzhala and Staley, 2003) and transition to seizure. Nonsyn-
aptic mechanisms are sufficient to cause seizures in synaptic
models, such as slices exposed to elevated potassium, because
seizures can persist when synaptic activity is pharmacologically
blocked (Jensen and Yaari, 1988). This is in agreement with our
observation that buildup in HFA can be also observed in high-
potassium model, and HFA shares morphological, spectral, and
dynamical similarities with HFA observed in low-calcium model.

Epileptic seizures appear abruptly at the macroscopic scale,
but closer investigation can reveal that the transition from the
physiological interictal state to the pathophysiological seizure
state is through a preictal period of the kind reported here. Sei-
zures depend of a wide variety of cellular, molecular, and other
mechanisms involving modulation of glutamatergic synaptic
transmission, failure of inhibition or depolarizing inhibitory po-
tentials, etc. Such a variety of mechanisms may help explain why
many epilepsies are hard to treat pharmacologically by drugs
targeting only one mechanism. Moreover, many of these mech-
anisms depend on, or are promoted by, increased neuronal firing
(Prince and Wilder, 1967; Traub et al., 1993, 1994, 1995; Staley,
2004; Wong et al., 2005). The increased and abundant neuronal
firing and synchrony preceding seizure onset reported here
would engage those mechanisms. Therefore, suppressing the pre-
ictal state described here would abolish the cascade of changes
responsible for transition to seizure, which makes the preictal
state the more attractive target for novel treatments than the
seizures themselves.
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SUPPLEMENTARY FIGURES WITH LEGENDS 

 

Supplementary figure 1 Schematics of experimental arrangements used in present study. A, 
Recording with glass electrodes. B, Recording with tetrodes. C, Current source density and 
laminar profile electrode arrangement. D, Multiple electrodes recording on a local scale. E, 
Multiple electrodes recording on a large (global) scale. F, Electric field application. G, Local 
glutamate application. H, Orthodromic response recording evoked by stimulating Schaffer 
collaterals. I, Antidromic stimulation of CA1 axons. 

 

 



 

 2

 

Supplementary figure 2 Multifocal seizure onset recorded with electrodes covering CA1 
area. Seizure starting in: the middle of CA1 (A), the subicular end (B), and simultaneously at 
both subicular and CA3 ends of CA1 (C). D, In CA1 minislice multifocal onset is preserved 
with 35% seizures starting in left part of minislice, 28% in the middle and 37% in the right. 
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Supplementary figure 3 Seizures, interictal period and preburst. A, Two consecutive 
seizures and interictal period with HFA and multiunit activity, high-pass filtered at 10 Hz.  B, 
Seizures and interictal period with preburst preceding second seizure. C, Example of preburst 
and associated wavelet power spectra. Prebursts have similar morphology to activity 
observed during the early stages of seizures. D, Detail of activity at an early stage of the 
preburst shown in C and during a more advanced stage (E). 
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Supplementary figure 4 Detail of HFA from individual channels of a tetrode. Note that the 
relative sizes of units on the different channels: unit 1 is maximal on channel 3, and unit 2 on 
channel 2. Circle (●) shows comparison between extracellular action potentials and 
individual HFA activity oscillation. Asterisk shows two different neurons co-firing during the 
individual oscillation of HFA, which suggests that individual HFA cycles represent firing of 
action potentials of small neuronal populations. 
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Supplementary figure 5 Block of synaptic transmission in the low-calcium model. A, 
Monitoring of orthodromic responses to Schaffer collateral stimulation before and after 
introduction of low-calcium aCSF. B, Normal synaptic response with superimposed 
population spike; response is preceded by a fibre volley. C, Disappearance of synaptic 
responses in low-calcium aCSF; only the fibre volley remains. Before the synaptic response 
disappears there is a transient period during which orthodromic stimulation evokes repetitive 
spikes (A: traces preceding c). 
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Characterizing signal complexity and local neuronal synchrony using entropy rates 

 

Let us suppose that enhanced synchronization among neurons in some location will lead to 

increased level of regularity or rhythmicity; or, from another point of view, a decreased level 

of complexity of electrographic signal (field potentials) recorded from that location. In order 

to quantitatively characterize the regularity, or temporal complexity of the signal, we consider 

the field potential signal as an output of a complex, dynamic process evolving in time. A 

series of measurements done on such a system in consecutive instants of time i = 1, 2, … is 

called time series { }ix . Consider further that the temporal evolution of the studied system is 

not completely random, i.e., that the state of the system in present time   in some way depends 

on the states in which the system was in previous time instants.  The strength of such a 

dependence per a unit time lag, or, inversely, a rate at which the system „forgets“ information 

about its previous states, can be an important quantitative characterization of temporal 

complexity in the system's evolution. 

 

The time series { }ix , which is a recording of the system temporal evolution, can be 

considered as a realization of a stochastic process { }iX , i.e., a sequence of stochastic 

variables, characterized by the joint probability distribution function  

( ) ( ) ( ) ( ){ }1 1 1 1,..., , ,..., Pr ,..., ,..., .n n n np x x p x x X X x x= =   

 

Uncertainty in a stochastic variable is measured by its entropy. The rate in which the 

stochastic process „produces“ uncertainty is measured by its entropy rate. The entropy rate of  

a stochastic process { }iX  is defined as (Cover & Thomas, 1991): 
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where  ( )1 ,..., nH X X   is the entropy of the joint distribution  ( )1 ,..., :np x x  
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1

1 1 1,..., ... ,..., log ,..., .
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The concept of entropy rates is common to the theory of stochastic processes as well as to the  

information theory where the entropy rates are used to characterize information production by 

information sources (Cover & Thomas, 1991). Alternatively, the time series can be considered 

as a projection of a trajectory of a (chaotic) dynamical system, evolving in some measurable 

state space. A. N. Kolmogorov, who introduced the  theoretical  concept  of classification of 

dynamical systems by information rates, was inspired by the information theory and  

generalized  the notion  of the entropy  of  an  information  source (Sinai, 1976). The 

Kolmogorov-Sinai entropy (Sinai, 1976), KSE thereafter, is a topological invariant, suitable 

for classification of dynamical systems or their states, and is related to the sum of the system's 

positive Lyapunov exponents (LE) according to the theorem of  Pesin (Pesin, 1977). Thus, the 

concept of entropy rates is common to theories based on philosophically opposite assumptions 

(randomness vs. determinism) and is ideally applicable for characterization of complex 

biological processes, where possible deterministic rules are always accompanied by random 

influences. However, possibilities to compute the exact entropy rates from experimental data 

are limited to a few exceptional cases (Palus, 1996). 
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Let us consider that { }iX  is a zero-mean stationary Gaussian process with spectral density 

function f(ω). Then its entropy rate hG, apart from constant term, can be expressed using  

( )f ω   as [see (Palus, 1997) and references therein]: 

 

                                                     ( )1 log .
2Gh f d

π

π
ω ω

π −
= ∫                                             (3) 

 

Dynamics of a stationary Gaussian process is fully described by its spectrum. Therefore the 

connection given by Eq. (3) between the entropy rate of such a process and its spectral density 

( )f ω  is understandable. The estimation of the entropy rate of a Gaussian process (GPER) is 

reduced to the estimation of its spectrum.  

 

If a studied time series was generated by a nonlinear, possibly chaotic, dynamical system, its 

description in terms of a spectral density is not sufficient. However, Palus (1997) have found 

that a relation between the KSE (or, equivalently, the sum of positive LE’s) of a dynamical 

system and the entropy rate of a Gaussian process isospectral to time series generated by the 

dynamical system exists as a nonlinear one-to-one function when the KSE varies smoothly 

with variations of system's parameters, but is broken in critical states near bifurcation points. 

Thus Gaussian process entropy rate (GPER) can be used as a useful first approximation of 

level of complexity of studied signals.   

 

REFERENCES: 

Cover, T. M. & Thomas, J. A. (1991). Elements of Information Theory. New York: J. Wiley 

& Sons. 

 



 

 4

Palus, M. (1996). Coarse-grained entropy rates for characterization of complex time series. 

Physica D, 93, 64-77. 

 

Palus, M. (1997). On Entropy Rates of Dynamical Systems and Gaussian Processes.  

Phys. Lett. A 227,  301-308. 

 

Pesin, Ya. B. (1977). Characteristic Lyapunov exponents and smooth ergodic theory. Russian 

Math.Surveys, 32, 55-114. 

 

Sinai, Ya. G. (1976). Introduction to Ergodic Theory.  Princeton: Princeton University Press. 

 
 
 
. 
                             


